首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   7篇
化学   155篇
综合类   1篇
物理学   8篇
  2024年   1篇
  2023年   1篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2017年   2篇
  2016年   2篇
  2015年   6篇
  2014年   7篇
  2013年   9篇
  2012年   6篇
  2011年   7篇
  2010年   6篇
  2009年   7篇
  2008年   5篇
  2007年   2篇
  2006年   7篇
  2005年   10篇
  2004年   11篇
  2003年   9篇
  2002年   5篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1979年   2篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
排序方式: 共有164条查询结果,搜索用时 406 毫秒
1.
2.
3.
A complete assignment of proton resonances for N(N-formyl d-phenylalanyl)-deoxyamino--cyclodextrin (1d) was performed by means of 1D and 2D NMR,1H–^1H-COSY, 1H–^13C-COSY, TOCSYand NOESY spectroscopy. Based on 2D-NMR ROESY and circular dichroism spectroscopy, the conformation of 1d was determined; the phenyl group stays inside the distorted cyclodextrin (CyD) cavity forming a self-inclusion complex, which is almost the same as N(N-formyl l-phenylalanyl)-deoxyamino--CyD (1l). The remarkable diastereomeric difference was observed in the chemical shifts of H(5) and H(6) protons at the narrow rim of the CyD cavity and induced circular dichroism spectra. These results suggest the existence of hydrogen bonds between the hydroxyl group on CyD and the amide groups on the arms, which provides the difference in the molecular recognition properties.  相似文献   
4.
A variety of aromatic compounds with both activating and deactivating substituents were brominated with sodium monobromoisocyanurate (SMBI) 1, diethyl ether, diethyl ether-methanesulfonic acid, trifluoroacetic acid, or sulfuric acid were employed as solvents. Thus nitrobenzene was conveniently brominated in sulfuric acid, benzene was readily monobrominated in diethyl ether-methanesulfonic acid, and phenol was selectively brominated at the ortho position under mild conditions in refluxing diethyl ether. With substituents that are easily protonated, trifluoroacetic acid may be employed as solvent in the reaction with 1, in contrast NBS was ineffective in trifluoroacetic acid. This renders 1 a superior reagent relative to NBS. In addition to aromatics, alkenes, ketones and esters were also brominated with 1. Diethyl malonate was brominated with 1 and then subjected to a Bingel reaction with NaH to afford the desired methanofullerene in reasonable yield.  相似文献   
5.
Spontaneous copolymerization of cyclic ketene acetal, 2-methylene-4-phenyl-1,3-dioxolane ( I ) with common electrophilic vinyl monomers, such as methyl α-cyanoacrylate (MCA), acrylonitrile (AN), and methyl methacrylate (MMA) were investigated to further explore zwitterion polymerization method with cyclic ketene acetals. In the reaction of I with MCA and AN, spontaneous copolymerization took place at ambient temperature. The copolymers of I with MCA gave low molecular weight polymers, but copolymers obtained with I and AN were high molecular weight polymers. In the reaction of I and MMA, high molecular weight copolymer was obtained only at temperatures above 80°C. Thus, obtained polymers were not the alternating copolymers and possessed high I content in all the cases. From the above results, macrozwitterionic mechanism was suggested as discussed.  相似文献   
6.
The cationic polymerizations of γ-methylphenylallene ( 1 ) and α-methylphenylallene ( 2 ) were carried out with some Lewis acids at 25 and 0°C in dichloromethane to obtain the corresponding polymers through allyl cations, respectively. Tin (IV) chloride was found to be an effective catalyst for the cationic polymerization of both allenes 1 and 2 compared with other Lewis acids. Thus, in the polymerization of 1 , methanol-insoluble polymer was only obtained using Tin (IV) chloride, and M?n of methanol-insoluble polymer obtained by Tin (IV) chloride was the highest in the polymerization of 2 . From the analysis of 1H- and 13C-NMR spectra of the obtained polymers, the polymer from 1 consisted of two kinds of units polymerized by each double bonds of allene 1 , whereas the polymer from 2 consisted of only one unit polymerized by terminal double bond of allene 2 . Moreover, effect of solvent on the cationic polymerizations of 1 and 2 were discussed.  相似文献   
7.
[reaction: see text] trans-RuCl2[P(C6H4-4-CH3)3]2(NH2CH2CH2NH2) acts as a highly effective precatalyst for the hydrogenation of a variety of benzophenone derivatives to benzhydrols that proceeds smoothly at 8 atm and 23-35 degrees C in 2-propanol containing t-C4H9OK with a substrate/catalyst ratio of 2000-20000. Use of a BINAP/chiral diamine Ru complex effects asymmetric hydrogenation of various ortho-substituted benzophenones and benzoylferrocene to chiral diarylmethanols with consistently high ee.  相似文献   
8.
A microporous clay mineral with organic-inorganic hybrid pillars was synthesized using a hydrochloric acid (HCl)/ethanol extraction method after intercalation of tetraethoxysilane (TEOS) or TEOS/methyltriethoxysilane (MTS) into the cetyltrimetylammonium ion (CTA)-exchanged vermiculite. The products retained their layered structure, due to the formation of stable pillars by the polymerization of hydrolyzed TEOS and MTS during the HCl/ethanol treatment. The BET surface areas, which increased to above 500 m2g(-1) with an increase in the HCl concentration up to 0.4 moldm(-3), are nearly equal to that of the calcined product obtained by the conventional method. However, the pore sizes of HCl/ethanol-treated materials were narrower than those of the calcined product, owing to the formation of the polysiloxane networks in the gallery. A water adsorption study showed that the product treated with a TEOS/MTS mixture had a hydrophobic surface as a result of the successful incorporation of methyl groups at the surface of the pillars. This novel method is advantageous for the synthesis of organophilic pillared clays with different kinds of organic materials in the interlayers.  相似文献   
9.
Poly(p-benzamide) with a defined molecular weight and a low polydispersity and a block copolymer containing this well-defined aramide was synthesized. Phenyl 4-aminobenzoate, which would yield poly(p-benzamide), did not polymerize under the conditions of chain-growth polycondensation. However, phenyl 4-(4-octyloxybenzylamino)benzoate (1b) polymerized at room temperature in the presence of base and phenyl 4-nitrobenzoate (2) as an initiator in a chain-growth polycondensation manner to give well-defined aromatic polyamides having the 4-octyloxybenzyl groups as a protecting group on nitrogen in an amide. It was confirmed by a model reaction that deprotection of this protecting group proceeded completely with trifluoroacetic acid (TFA) without breaking the amide linkage. The utility of this approach to poly(p-benzamide) with a low polydispersity was demonstrated by the synthesis of block copolymers. Thus, phenyl 4-(octylamino)benzoate (1a) polymerized in the presence of 2 and base, followed by addition of 1b and base to the reaction mixture of the prepolymer to yield the block copolymer of 1a and 1b with a controlled molecular weight and a low polydispersity. The block copolymer was treated with TFA, resulting in a soluble block copolymer of poly(N-octyl-p-benzamide) and poly(p-benzamide). The SEM images of the supramolecular assemblies of the block copolymer showed mum-sized bundles and aggregates of flake structures.  相似文献   
10.
Well‐defined (AB)3 type star block copolymer consisting of aromatic polyether arms as the A segment and polystyrene (PSt) arms as the B segment was prepared using atom transfer radical polymerization (ATRP), chain‐growth condensation polymerization (CGCP), and click reaction. ATRP of styrene was carried out in the presence of 2,4,6‐tris(bromomethyl)mesitylene as a trifunctional initiator, and then the terminal bromines of the polymer were transformed to azide groups with NaN3. The azide groups were converted to 4‐fluorobenzophenone moieties as CGCP initiator units by click reaction. However, when CGCP was attempted, a small amount of unreacted initiator units remained. Therefore, the azide‐terminated PSt was then used for click reaction with alkyne‐terminated aromatic polyether, obtained by CGCP with an initiator bearing an acetylene unit. Excess alkyne‐terminated aromatic polyether was removed from the crude product by means of preparative high performance liquid chromatography (HPLC) to yield the (AB)3 type star block copolymer (Mn = 9910, Mw/Mn = 1.10). This star block copolymer, which contains aromatic polyether segments with low solubility in the shell unit, exhibited lower solubility than A2B or AB2 type miktoarm star copolymers. In addition, the obtained star block copolymer self‐assembled to form spherical aggregates in solution and plate‐like structures in film. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号